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Proving without revealing

Zero-Knowledge

Prover P Verifier V

The context is public

Secret s

π =
(
com(s), c, resp(s, c)

)
¥ | q

Completeness

V accepts π if s is valid

(Know.) Soundness

If V accepts π then s is valid

Zero-Knowledge

V does not gain info. with π
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Proving without revealing

Commit-and-prove

Prover P Verifier V

+ (additional_material)

∧ ¥ | q

The context is public

Secret s

π =
(
com(s), c, resp(s, c)

)
¥ | q

Completeness

V accepts π if s is valid
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An idea of a lattice based ZK proof

Knowledge of an Ajtai opening

Prover P Verifier V

A

Smalls s ,y t = As,w = Ay

small c

z = cs+ y

Az
?
= ct+w ∧ z is small

The protocol is not zero-knowledge

If c is small then it will more likely leak information about cs and therefore s.
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Transmitting without revealing

Rejection Sampling [Lyu09]:

GOAL: Artificially controlling output distribution of the responses resp(s, c).

1. Prover aborts and restarts the entire protocol when resp(s, c) leaks info about s

2. Verifier sees a publicly known distribution from its point of view.

0 cs

Accept

Reject and resample,
Scaled distribution.

[Lyu09] Fiat-Shamir with aborts: Applications to lattice and factoring-based signatures.; Lyubashevsky, 2009
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Transmitting without revealing

Rejection Sampling [Lyu09]:

GOAL: Artificially controlling output distribution of the responses resp(s, c).

1. Prover aborts and restarts the entire protocol when resp(s, c) leaks info about s

2. Verifier sees a publicly known distribution from its point of view.

Problems

1. Non constant time as the prover can’t predict the rejection,

2. Must involve costly masking to protect it from side-channel attacks.

[Lyu09] Fiat-Shamir with aborts: Applications to lattice and factoring-based signatures.; Lyubashevsky, 2009
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Contribution

Commit-and-prove Zero-Knowledge Lattices

• Linear relation,

• Quadratic relation,

• Automorphism σ−1

[LNP22]:

[LNP22] Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General; Lyubashevsky, Nguyen, and Plançon, 2022

A Commit-and-prove framework of proof secure based on rejection sampling.
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Contribution

Commit-and-prove Zero-Knowledge Lattices

Rejection Sampling

Module Lattices
Need: Secure the knowledge of
secret s and materials linked to s• Linear relation,

• Quadratic relation,

• Automorphism σ−1

Relations f over s

[LNP22]:
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Contribution

Commit-and-prove Zero-Knowledge Lattices

Module Lattices
Idea: modify s in order to force
the distribution without aborting• Linear relation,

• Quadratic relation,

• Automorphism σ−1

Relations f over s

Ours:

A Commit-and-prove framework of proof rejection-free secure over Hint-MLWE.
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Contribution

Commit-and-prove Zero-Knowledge Lattices

Module Lattices

s̃ = Gauss(s) (not unique)

Solution: Force elements to follow
Discrete Gaussians Dstributions

Assumption: Hint - MLWE MLWEConstruct f̃ such that:

f(s) = 0 ⇐⇒ f̃(s̃) = 0

• Linear relation,

• Quadratic relation,

• Automorphism σ−1

Relations f over sRelations f̃ over s̃

Ours:

A Commit-and-prove framework of proof rejection-free secure over Hint-MLWE.
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Lattice assumption
Module Learning With Errors (MLWE) [Reg05,LS15]:

Consider R = Z[X]/⟨Xd + 1⟩ for d a power of two, Rq = R/qR with q an integer.

b=MLWE : A
s
+ e

A← U(Rm×n)

, H ∈ R(n+m)×(n+m) ,

s← DRn,σs , e← DRm,σe

, e′ ← DR(n+m),σe′

b ∈ Rm

, z ∈ Rn+m

Public matrices and vectors

Discrete Gaussians

s
find

[Reg05] On lattices, Learning With Errors, random linear codes, and cryptography; Regev, 2005

[LS15] Worst-Case to Average-Case Reductions for Module Lattices; Langlois and Stehlé, 2015
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Lattice assumption
Module Learning With Errors (MLWE) with hints about the secret/error: Hint-MLWE [KLSS23]

Consider R = Z[X]/⟨Xd + 1⟩ for d a power of two, Rq = R/qR with q an integer.

b=Hint-MLWE : A
s
+ e

A← U(Rm×n) , H ∈ R(n+m)×(n+m) , s← DRn,σs , e← DRm,σe , e′ ← DR(n+m),σe′

b ∈ Rm , z ∈ Rn+m

Public matrices and vectors

Discrete Gaussians

s
findH

s

e
+

,

e′z
=

[KLSS23] Toward Practical Lattice-Based Proof of Knowledge from Hint-MLWE; Kim et al., 2023
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Consider R = Z[X]/⟨Xd + 1⟩ for d a power of two, Rq = R/qR with q an integer.

b=Hint-MLWE : A
s
+ e

A← U(Rm×n) , H ∈ R(n+m)×(n+m) , s← DRn,σs , e← DRm,σe , e′ ← DR(n+m),σe′

b ∈ Rm , z ∈ Rn+m

Public matrices and vectors

Discrete Gaussians

s
findH

s

e
+

,

e′z
=

[KLSS23] Toward Practical Lattice-Based Proof of Knowledge from Hint-MLWE; Kim et al., 2023

MLWE =⇒ Hint-MLWE [KLSS23], when secrets and errors follow Discrete Gaussians.

5/8



Our modification of the framework

In ours:

• Use z̃ as hint in Hint-MLWE ensuring that it is built on a Gaussian element.

• Use the Gaussianised s̃ = Gauss(s) (such that Gbs̃ = s) using [HSS24].

In [LNP22]:

• Use rejection sampling to ensure zero-knowledge.

z := c s + y

z̃ := c s̃ + ỹ

[LNP22] Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General; Lyubashevsky, Nguyen, and Plançon, 2022
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Our modification of the framework

In ours:

• Use z̃ as hint in Hint-MLWE ensuring that it is built on a Gaussian element.

• Use the Gaussianised s̃ = Gauss(s) (such that Gbs̃ = s) using [HSS24].

z̃ := c s̃ + ỹ

s :=


1 b · · · bk 0

. . .

0 1 b · · · bk

 s̃ with s̃ =



s̃0

...

s̃k


=: Gb with k = ⌊logb q⌋ − 1

[HSS24] Concretely Efficient Lattice-based Polynomial Commitment from Standard Assumptions; Hwang, Seo, and Song, 2024
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z̃ := c s̃ + ỹ

[HSS24] Concretely Efficient Lattice-based Polynomial Commitment from Standard Assumptions; Hwang, Seo, and Song, 2024

Take a prime integer q = b2 + 1, e.g. we take 17 = 42 + 1.

Let s =
[
1 7 −1

]
decomposed in base 4 as ŝ =

[[
1 0

] [
3 1

] [
0 4

]]
(L to R).

We add a Gaussian error sampled from {x | Gbx = 0} centred in 0.

• Here, consider the Gaussian sampled element ê =
[[
5 3

] [
1 4

] [
−4 7

]]
.

We finally compute: s̃ = ŝ+ ê =
[[
6 3

] [
4 5

] [
−4 11

]]
, Gaussian centred in ŝ.
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Our modification of the framework

In ours:

• Use z̃ as hint in Hint-MLWE ensuring that it is built on a Gaussian element.

• Use the Gaussianised s̃ = Gauss(s) (such that Gbs̃ = s) using [HSS24].

z̃ := c s̃ + ỹ

[HSS24] Concretely Efficient Lattice-based Polynomial Commitment from Standard Assumptions; Hwang, Seo, and Song, 2024


1

7

−1

 :=


1 4 0 0 0 0

0 0 1 4 0 0

0 0 0 0 1 4





[
6

3

]
[
4

5

]
[
−4
11

]

 mod 17

Let q = 17 and b = 4.
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Our modification of the framework

In ours:

• Use z̃ as hint in Hint-MLWE ensuring that it is built on a Gaussian element.

• Use the Gaussianised s̃ = Gauss(s) (such that Gbs̃ = s) using [HSS24].

z̃ := c s̃ + ỹ

s :=
∑

0≤i<⌊logb q⌋ b
i ŝi +

∑
0≤i<⌊logb q⌋ b

i êi =
∑

0≤i<⌊logb q⌋ b
i s̃i

Base-b decomposition Gaussian error over Λ⊥
q (Gb)

[HSS24] Concretely Efficient Lattice-based Polynomial Commitment from Standard Assumptions; Hwang, Seo, and Song, 2024
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Our modification of the framework

In ours:

• Use z̃ as hint in Hint-MLWE ensuring that it is built on a Gaussian element.

• Use the Gaussianised s̃ = Gauss(s) (such that Gbs̃ = s) using [HSS24].

• With the naive construction: Use z̃ to prove relations over s̃.

In [LNP22]:

• Use rejection sampling to ensure zero-knowledge.

• Use z to prove relations over s.

z := c s + y

z̃ := c s̃ + ỹ
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In ours:

• Use z̃ as hint in Hint-MLWE ensuring that it is built on a Gaussian element.

• Use the Gaussianised s̃ = Gauss(s) (such that Gbs̃ = s) using [HSS24].

• What we did: Use z̃ to prove relations over s.

In [LNP22]:

• Use rejection sampling to ensure zero-knowledge.

• Use z to prove relations over s.
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Extension to a commit-and-prove protocol
Black-box use to prove different relations

By just commiting s, we consider public relations over x := [s, σ−1(s)].

x⊤R2x+r⊤1 x+r = t Rx = t

As σ(̃s) = σ̃−1(s) then x̃ := [̃s, σ−1(̃s)]
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Black-box use to prove different relations

By just commiting s, we consider public relations over x := [s, σ−1(s)].

x⊤R2x+r⊤1 x+r = t Rx = t

As σ(̃s) = σ̃−1(s) then x̃ := [̃s, σ−1(̃s)]

Some usecases and examples:

• Constant coeff of
(
s⊤σ−1(s)

)
[0] is equal to ⟨s⃗, s⃗⟩ i.e. the constant coefficient of

the quadratic relation for R2 =

[
0 0

I 0

]
, r1 = 0 and r = 0.

• Knowledge of As = 0 such that 0 < ∥s∥ < β (s is a SIS solution),

• For the norm ∥s∥ < β ⇐⇒ β2 −
(
s⊤σ(s)

)
[0] > 0 + proof of no-wraparound.
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x⊤R2x+r⊤1 x+r = t Rx = t As σ(̃s) = σ̃−1(s) then x̃ := [̃s, σ−1(̃s)]

Modifying relations over s to relation over s̃: remind that x = Gbx̃.

• In [LNP22]: use z = cs+ y to prove x⊤R2x+ r⊤1 x+ r0 = 0.
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Conclusion
• A rejection-free alternative to prove computable relations,
• Without restriction to norm-bounded secret but not extendable to norm relations,

• Implementation usable (as an addon) of the LaZer library from [LSS24]:

Protocol Phase (p ≈ 260,m = 12) (p ≈ 280,m = 120)

[LNP22]
Prove

324.22 4462.29

Ours 59.45 3961.24

[LNP22]
Verify

18.54 1629.12

Ours 41.74 3624.34

Mean times (in million cycles), with p the moduli and m the size of the secret.

Verifying phase
at most × 3

Proving phase

at most ×
3

rej. rate

[LNP22] Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General; Lyubashevsky, Nguyen, and Plançon, 2022

[LSS24] The LaZer Library: Lattice-Based Zero Knowledge and Succinct Proofs for Quantum-Safe Privacy; Lyubashevsky, Seiler, and Steuer, 2024 8/8
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