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Proving without revealing

Zero-Knowledge

Secret s

| Prover P

Completeness

V accepts 7 if s is valid

The context is public
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Verifier V

7 = (com(s), c,resp(s, c))
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(Know.) Soundness Zero-Knowledge

If V accepts 7 then s is valid V does not gain info. with 7



Proving without revealing

Commit-and-prove

Secret s

| Prover P

Completeness

V accepts 7 if s is valid

The context is public

<

>
>

Verifier V

7 = (com(s), c,resp(s, c))
+ (additional material)

QI®NDI®

(Know.) Soundness Zero-Knowledge

If V accepts 7 then s is valid V does not gain info. with m
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An idea of a lattice based ZK proof

Knowledge of an Ajtai opening

Smalls s,y

A

t=As,w=Ay

small ¢

| Prover P -

Z=CcS+Yy

Verifier V

Az;ct—l—w/\z is small
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An idea of a lattice based ZK proof

Knowledge of an Ajtai opening A
Smalls s,y t=As,w=Ay
>
small ¢
| Prover P - Verifier V
Z=CS+Yy
>

Az;ct—i-WAz is small

The protocol is not zero-knowledge

If ¢ is small then it will more likely leak information about ¢s and therefore s.
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Transmitting without revealing

Rejection Sampling [Lyu09]:
GOAL: Artificially controlling output distribution of the responses resp(s, c).

1. Prover aborts and restarts the entire protocol when resp(s, c¢) leaks info about s

2. Verifier sees a publicly known distribution from its point of view.

7<\ [ ] Accept
N

I:l Reject and resample,
. Scaled distribution.

0 cs

[Lyu09] Fiat-Shamir with aborts: Applications to lattice and factoring-based signatures.; Lyubashevsky, 2009
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Transmitting without revealing

Rejection Sampling [Lyu09]:
GOAL: Artificially controlling output distribution of the responses resp(s, c).

1. Prover aborts and restarts the entire protocol when resp(s, c¢) leaks info about s

2. Verifier sees a publicly known distribution from its point of view.

Problems

1. Non constant time as the prover can’t predict the rejection,

2. Must involve costly masking to protect it from side-channel attacks.

[Lyu09] Fiat-Shamir with aborts: Applications to lattice and factoring-based signatures.; Lyubashevsky, 2009



Contribution

Commit-and-prove Zero-Knowledge Lattices

[LNP22]: Y

A Commit-and-prove framework of proof secure based on rejection sampling.

[LNP22] Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General; Lyubashevsky, Nguyen, and Plangon, 2022



Contribution

Commit-and-prove

| Relations f over s ]

® Linear relation,

® Quadratic relation,

® Automorphism o_ 1

[LNP22]:

Zero-Knowledge Lattices

|
Need: Secure the knowledge of

) . Module Lattices
secret s and materials linked to s

\

Rejection Sampling

Voo

A Commit-and-prove framework of proof secure based on rejection sampling.

[LNP22] Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General; Lyubashevsky, Nguyen, and Plangon, 2022



Contribution

Commit-and-prove

| Relations f over s ]

® Linear relation,

® Quadratic relation,

® Automorphism o_ g

Ours:

Zero-Knowledge

Idea: modify s in order to force
the distribution without aborting

Lattices

Module Lattices

A Commit-and-prove framework of proof rejection-free secure over Hint-MLWE.
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Contribution

Commit-and-prove

Relations f over § R

® Linear relation,

® Quadratic relation,

Construct f such that:
f(s) =0+ f(8) =0

Ours:

Zero-Knowledge Lattices

Module Lattices

Solution: Force elements to follow
Discrete Gaussians Dstributions

§ = Gauss(s) (not unique) \
® Automorphism o_1 /

Assumption: Hint - MLWE

Voo

>

MLWE

A Commit-and-prove framework of proof rejection-free secure over Hint-MLWE.



Lattice assumption
Module Learning With Errors (MLWE) [Reg05,LS15]:

Consider R = Z[X]/(X?% + 1) for d a power of two, R, = R/qR with ¢ an integer.

MLWE: b= A H+ find

A~ UR™™) S < Drn g, , € < Drm o,

beR™

Public matrices and vectors

Discrete Gaussians

[Reg05]  On lattices, Learning With Errors, random linear codes, and cryptography; Regev, 2005

[LS15] Worst-Case to Average-Case Reductions for Module Lattices; Langlois and Stehlé, 2015
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Lattice assumption
Module Learning With Errors (MLWE) with hints about the secret/error: Hint-MLWE [KLSS23]

Consider R = Z[X]/(X?% + 1) for d a power of two, R, = R/qR with ¢ an integer.

/)
Hint-MLWE : [b|=| A H+ | H I+H find )H

A« UR™™) , H e Rtmx(im) s Dp. e+ Drmg,, , € DRntm) 5,

beR™, zeR"™ Discrete Gaussians

Public matrices and vectors

[KLSS23] Toward Practical Lattice-Based Proof of Knowledge from Hint-MLWE; Kim et al., 2023



Lattice assumption

Module Learning With Errors (MLWE) with hints about the secret/error: Hint-MLWE [KLSS23]

Consider R = Z[X]/(X?% + 1) for d a power of two, R, = R/qR with ¢ an integer.

/
Hint-MLWE : [b|=| A H+ - H +H find )H

A —UR™™) , H e RUTMXEHM) s« Dy, € Drmg, , € < Dyim 4,

beR™, zeR"™ Discrete Gaussians

Public matrices and vectors

MLWE = Hint-MLWE [KLSS23], when secrets and errors follow Discrete Gaussians.

[KLSS23] Toward Practical Lattice-Based Proof of Knowledge from Hint-MLWE; Kim et al., 2023



Our modification of the framework

In ours: Z =S +Yy

e Use z as hint in Hint-MLWE ensuring that it is built on a Gaussian element.

In[LNP22]: @2 (=@ s + ¥

e Use rejection sampling to ensure zero-knowledge.

[LNP22] Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General; Lyubashevsky, Nguyen, and Plangon, 2022
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e Use z as hint in Hint-MLWE ensuring that it is built on a Gaussian element.

* Use the Gaussianised § = Gauss(s) (such that G;$ = s) using [HSS24].
In [LNP22]: Z —cs +y

e Use rejection sampling to ensure zero-knowledge.

[LNP22] Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General; Lyubashevsky, Nguyen, and Plangon, 2022
[HSS24] Concretely Efficient Lattice-based Polynomial Commitment from Standard Assumptions; Hwang, Seo, and Song, 2024



Our modification of the framework

In ours: Z =S +Yy

e Use z as hint in Hint-MLWE ensuring that it is built on a Gaussian element.

* Use the Gaussianised § = Gauss(s) (such that G;$ = s) using [HSS24].

1b oo b 0
s = s with § =
0 1 b b )
Sk
=: Gy with k= [log,q] — 1

[HSS24] Concretely Efficient Lattice-based Polynomial Commitment from Standard Assumptions; Hwang, Seo, and Song, 2024
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Our modification of the framework

In ours: Z =S +y

e Use z as hint in Hint-MLWE ensuring that it is built on a Gaussian element.

* Use the Gaussianised § = Gauss(s) (such that G;$ = s) using [HSS24].

Take a prime integer ¢ = b% + 1, e.g. we take 17 = 42 + 1.

Let s = [1 7 —1} decomposed in base 4 as § = Hl O} [3 1} [0 4” (L to R).

We add a Gaussian error sampled from {x | Gyx = 0} centred in 0.

e Here, consider the Gaussian sampled element & = H } [ ] [—4 7”

We finally compute: § =§+ & = [[6 3} [4 5] [ 4 11” Gaussian centred in §.

[HSS24] Concretely Efficient Lattice-based Polynomial Commitment from Standard Assumptions; Hwang, Seo, and Song, 2024



Our modification of the framework

In ours: Z =S +Yy

e Use z as hint in Hint-MLWE ensuring that it is built on a Gaussian element.

* Use the Gaussianised § = Gauss(s) (such that G;$ = s) using [HSS24].

Let ¢ =17 and b = 4. [ 6] |
i
4
140000 H
71 =10 014 0 0| [[-4|| mod17
~1 00001 4 _[11]_

[HSS24] Concretely Efficient Lattice-based Polynomial Commitment from Standard Assumptions; Hwang, Seo, and Song, 2024



Our modification of the framework

In ours: Z =S +Yy

e Use z as hint in Hint-MLWE ensuring that it is built on a Gaussian element.

* Use the Gaussianised § = Gauss(s) (such that G;$ = s) using [HSS24].

— AP iA i~
S = Do<i<logyq) 0 Bi T 2o<ic|log, q V' € = o<i<log, q) V' Bi

Base-b decomposition Gaussian error over AqL(Gb)

[HSS24] Concretely Efficient Lattice-based Polynomial Commitment from Standard Assumptions; Hwang, Seo, and Song, 2024



Our modification of the framework

In ours: Z =S +y

e Use z as hint in Hint-MLWE ensuring that it is built on a Gaussian element.

* Use the Gaussianised § = Gauss(s) (such that G;$ = s) using [HSS24].

e With the naive construction: Use z to prove relations over .

In[LNP22): 2 := @8 + y

e Use rejection sampling to ensure zero-knowledge.

e Use z to prove relations over s.

[LNP22] Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General; Lyubashevsky, Nguyen, and Plangon, 2022



Our modification of the framework

In ours: Z =S +y

e Use z as hint in Hint-MLWE ensuring that it is built on a Gaussian element.

* Use the Gaussianised § = Gauss(s) (such that G;$ = s) using [HSS24].

e What we did: Use z to prove relations over s.

In[LNP22): 2 := @8 + y

e Use rejection sampling to ensure zero-knowledge.

e Use z to prove relations over s.

[LNP22] Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General; Lyubashevsky, Nguyen, and Plangon, 2022



Extension to a commit-and-prove protocol
Black-box use to prove different relations

By just commiting s, we consider public relations over x := [s,0_1(8)].

x Rox+r]x+r=t Rx=t



Extension to a commit-and-prove protocol
Black-box use to prove different relations

By just commiting s, we consider public relations over x := [s,0_1(8)].

XTRgx+r1Tx+r:t Rx=t
Some usecases and examples:

o Constant coeff of (s"o_1(s))[0] is equal to (5, 3) i.e. the constant coefficient of

00
the quadratic relation for Ry = [I ] ,ry =0 and r =0.
0

e Knowledge of As = 0 such that 0 < ||s|| < g (s is a SIS solution),

e For the norm ||s|| < 8 <= 82 — (s"o(s))[0] > 0 + proof of no-wraparound.



Extension to a commit-and-prove protocol

Black-box use to prove different relations

By just commiting s, we consider public relations over x := [s,0_1(8)].
T T . — - —_ — - - -
x Rox+r{x+r =t I = As 0 (8) = 0_1(s) then % := [5, o_1 ()]

Modifying relations over s to relation over §: remind that x = Gpx.

e In [LNP22]: use z = ¢s +y to prove x ' Rox + I‘lTX +rg = 0.

e Exploit the same strategy Z = ¢§ + ¥ to prove X' RoX + r]—f( + 79 = 0.

[LNP22] Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General; Lyubashevsky, Nguyen, and Plangon, 2022
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Extension to a commit-and-prove protocol

Black-box use to prove different relations

By just commiting s, we consider public relations over x := [s,0_1(8)].
T T . — - —_ — - - -
x Rox+r{x+r =t I = As 0 (8) = 0_1(s) then % := [5, o_1 ()]

Modifying relations over s to relation over §: remind that x = Gpx.

e In [LNP22]: use z = ¢s +y to prove x ' Rox + I‘lTX +rg = 0.
e Exploit the same strategy Z = ¢§ + ¥ to prove X' RoX + r]—f( + 79 = 0.

* Both the relation and Gy are public, we use Z to prove x ' Rox + rirx +7r9=20
by proving the equivalent relation iT(GbTRng)fc + (r{ Gp)X +7r = 0.

[LNP22] Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General; Lyubashevsky, Nguyen, and Plangon, 2022
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Conclusion

e A rejection-free alternative to prove computable relations,

e Without restriction to norm-bounded secret but not extendable to norm relations,

e Implementation usable (as an addon) of the LaZer library from [LSS24]:

Protocol ~ Phase (p=~2% m=12) (p=~2% m =120)

[LNP22] 324.22 4462.29
Prove

Ours 59.45 3961.24

[LNP22] . 18.54 1629.12
erify

Ours 41.74 3624.34

Mean times (in million cycles), with p the moduli and m the size of the secret.

[LNP22] Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General; Lyubashevsky, Nguyen, and Plangon, 2022
[LSS24] The LaZer Library: Lattice-Based Zero Knowledge and Succinct Proofs for Quantum-Safe Privacy; Lyubashevsky, Seiler, and Steuer, 2024
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Conclusion

e A rejection-free alternative to prove computable relations,

e Without restriction to norm-bounded secret but not extendable to norm relations,

e Implementation usable (as an addon) of the LaZer library from [LSS24]:

[LNP22]
[LSS24]

Protocol ~ Phase (p=~2% m=12) (p=~2% m =120)

[LNP22] 324.22 4462.29 Proving phase
Prove at most X —; 3
Ours 59.45 3961.24 rej. rate
[LNP22] . 18.54 1629.12
erify
Ours 41.74 3624.34

Mean times (in million cycles), with p the moduli and m the size of the secret.

Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General; Lyubashevsky, Nguyen, and Plangon, 2022

The LaZer Library: Lattice-Based Zero Knowledge and Succinct Proofs for Quantum-Safe Privacy; Lyubashevsky, Seiler, and Steuer, 2024
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