

Rejection-free Framework of Zero-Knowledge Proof based on (Hint-)Module Learning with Errors

Antoine Douteau, Adeline Roux-Langlois

CNRS, GREYC, Caen

Indocrypt 2025

December 14-17th

Proving without revealing

Zero-Knowledge

The context is public

$\pi = (\text{com}(s), c, \text{resp}(s, c))$

Completeness

\mathcal{V} accepts π if s is valid

(Know.) Soundness

If \mathcal{V} accepts π then s is valid

Zero-Knowledge

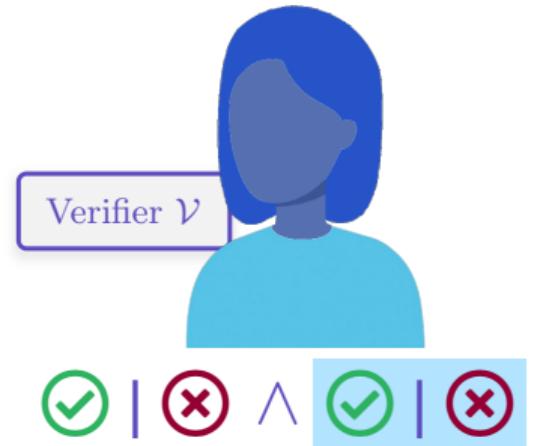
\mathcal{V} does not gain info. with π

Proving without revealing

Commit-and-prove

The context is public

$\pi = (\text{com}(s), c, \text{resp}(s, c))$
+ (additional_material)



Completeness

\mathcal{V} accepts π if s is valid

(Know.) Soundness

If \mathcal{V} accepts π then s is valid

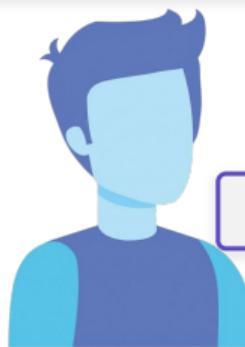
Zero-Knowledge

\mathcal{V} does not gain info. with π

An idea of a lattice based ZK proof

Knowledge of an Ajtai opening

A

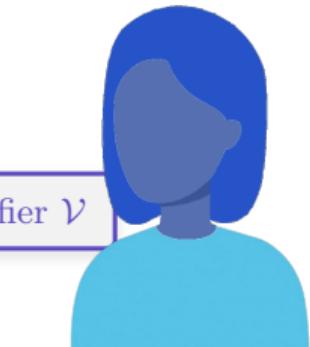


Smalls \mathbf{s}, \mathbf{y}

$\mathbf{t} = \mathbf{A}\mathbf{s}, \mathbf{w} = \mathbf{A}\mathbf{y}$

small c

$\mathbf{z} = c\mathbf{s} + \mathbf{y}$



Verifier \mathcal{V}

$\mathbf{A}\mathbf{z} \stackrel{?}{=} c\mathbf{t} + \mathbf{w} \wedge \mathbf{z}$ is small

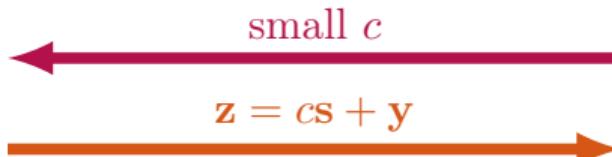
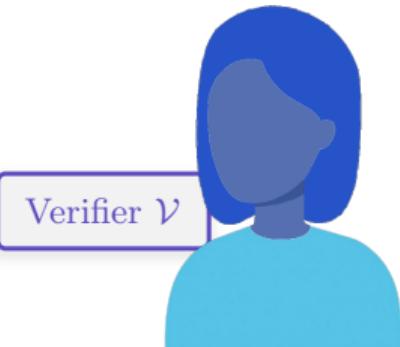
An idea of a lattice based ZK proof

Knowledge of an Ajtai opening

A

Smalls \mathbf{s}, \mathbf{y}

$\mathbf{t} = \mathbf{A}\mathbf{s}, \mathbf{w} = \mathbf{A}\mathbf{y}$



Verifier \mathcal{V}

$\mathbf{A}\mathbf{z} \stackrel{?}{=} c\mathbf{t} + \mathbf{w} \wedge \mathbf{z}$ is small

The protocol is not zero-knowledge

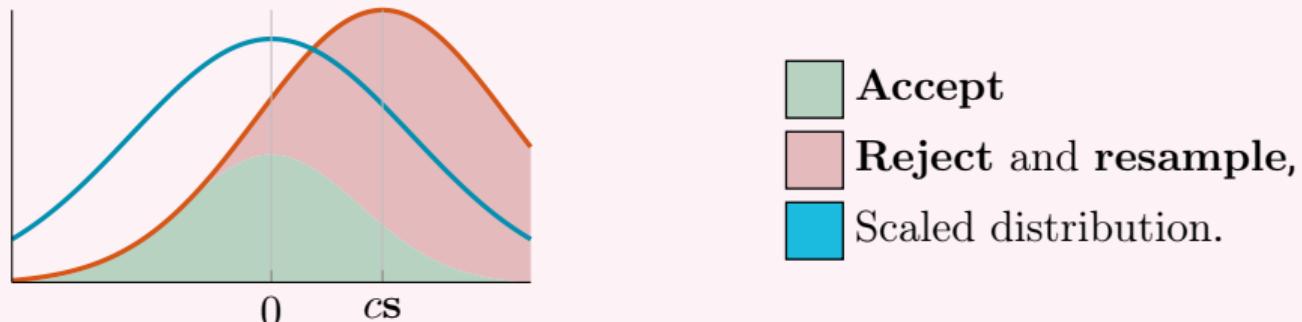
If c is small then it will more likely leak information about $c\mathbf{s}$ and therefore \mathbf{s} .

Transmitting without revealing

Rejection Sampling [Lyu09]:

GOAL: Artificially controlling output distribution of the responses $\text{resp}(\mathbf{s}, c)$.

1. **Prover** aborts and restarts the entire protocol when $\text{resp}(\mathbf{s}, c)$ leaks info about \mathbf{s}
2. **Verifier** sees a publicly known distribution from its point of view.

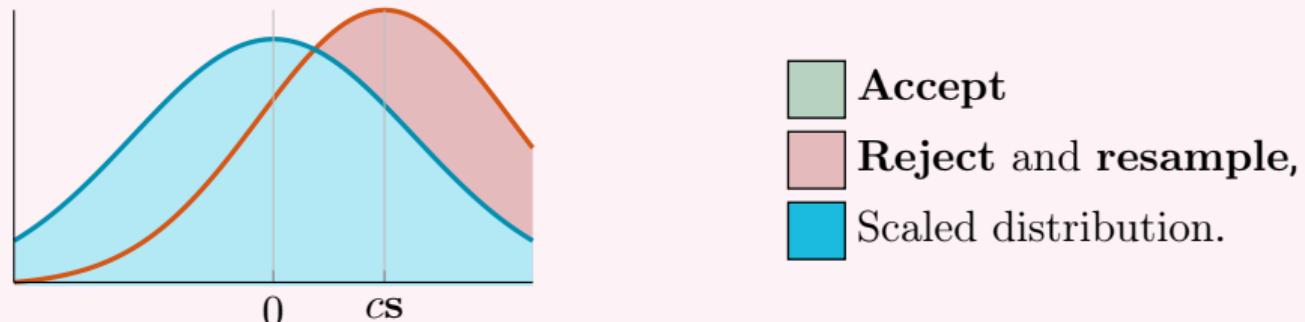


Transmitting without revealing

Rejection Sampling [Lyu09]:

GOAL: Artificially **controlling** output distribution of the responses $\text{resp}(\mathbf{s}, c)$.

1. **Prover** **aborts** and **restarts** the entire protocol when $\text{resp}(\mathbf{s}, c)$ leaks info about \mathbf{s}
2. **Verifier** sees a **publicly known distribution** from its point of view.



Transmitting without revealing

Rejection Sampling [Lyu09]:

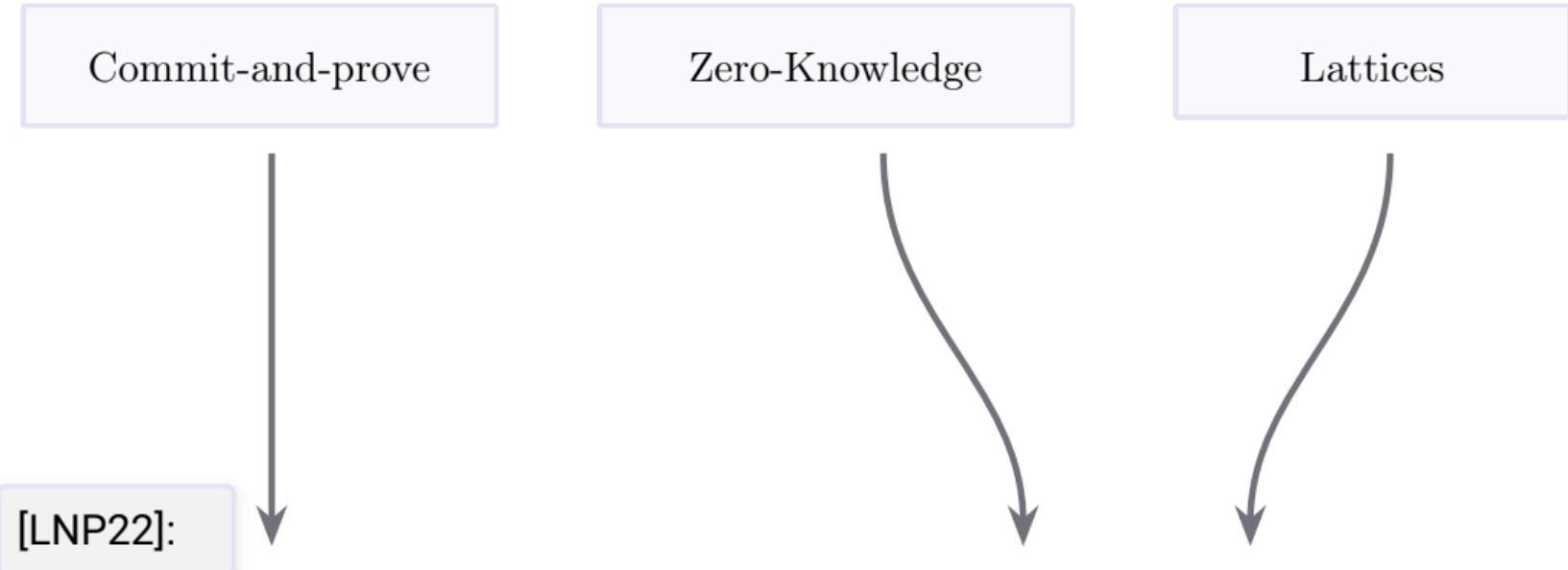
GOAL: Artificially **controlling** output distribution of the responses $\text{resp}(\mathbf{s}, c)$.

1. **Prover** **aborts** and **restarts** the entire protocol when $\text{resp}(\mathbf{s}, c)$ leaks info about \mathbf{s}
2. **Verifier** sees a **publicly known distribution** from its point of view.

Problems

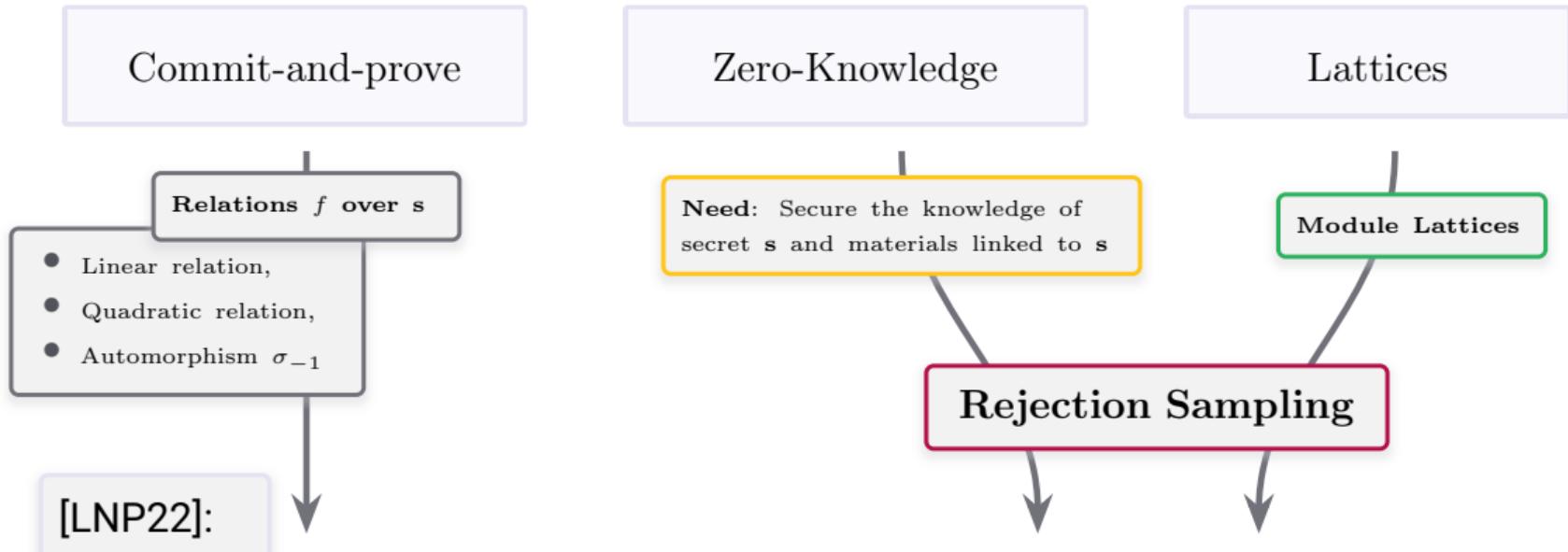
1. Non constant time as the prover can't predict the rejection,
2. Must involve **costly masking** to protect it from side-channel attacks.

Contribution



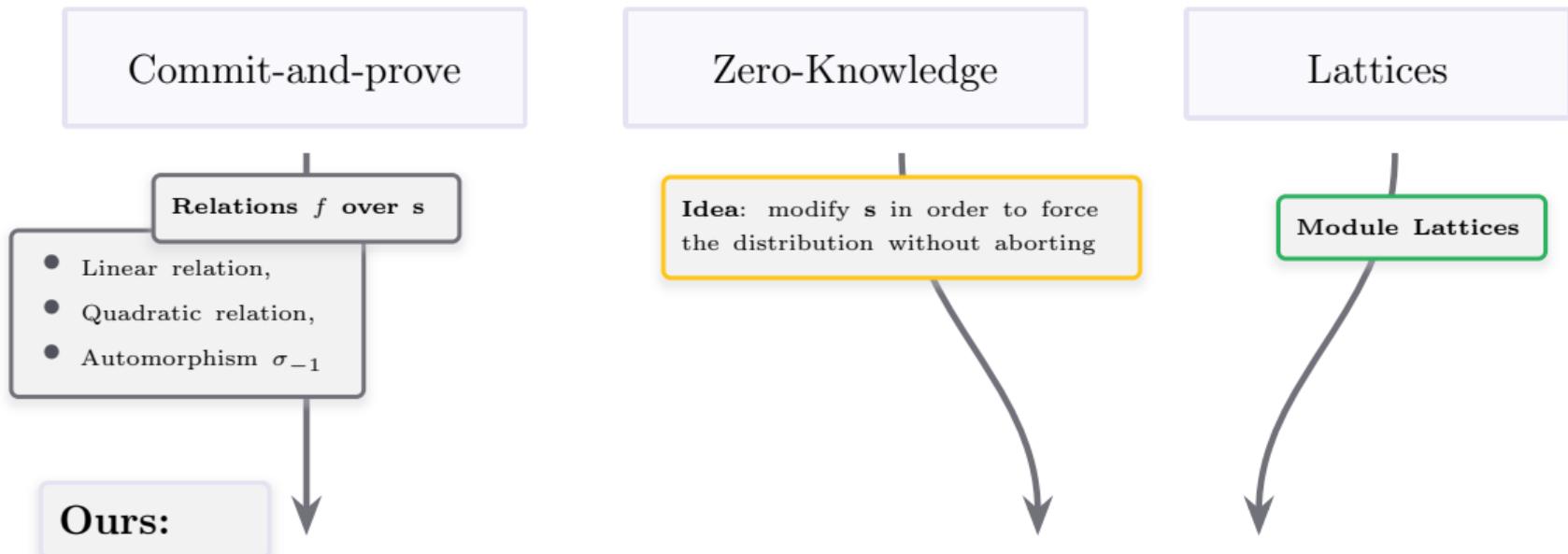
A Commit-and-prove framework of proof **secure based on rejection sampling**.

Contribution



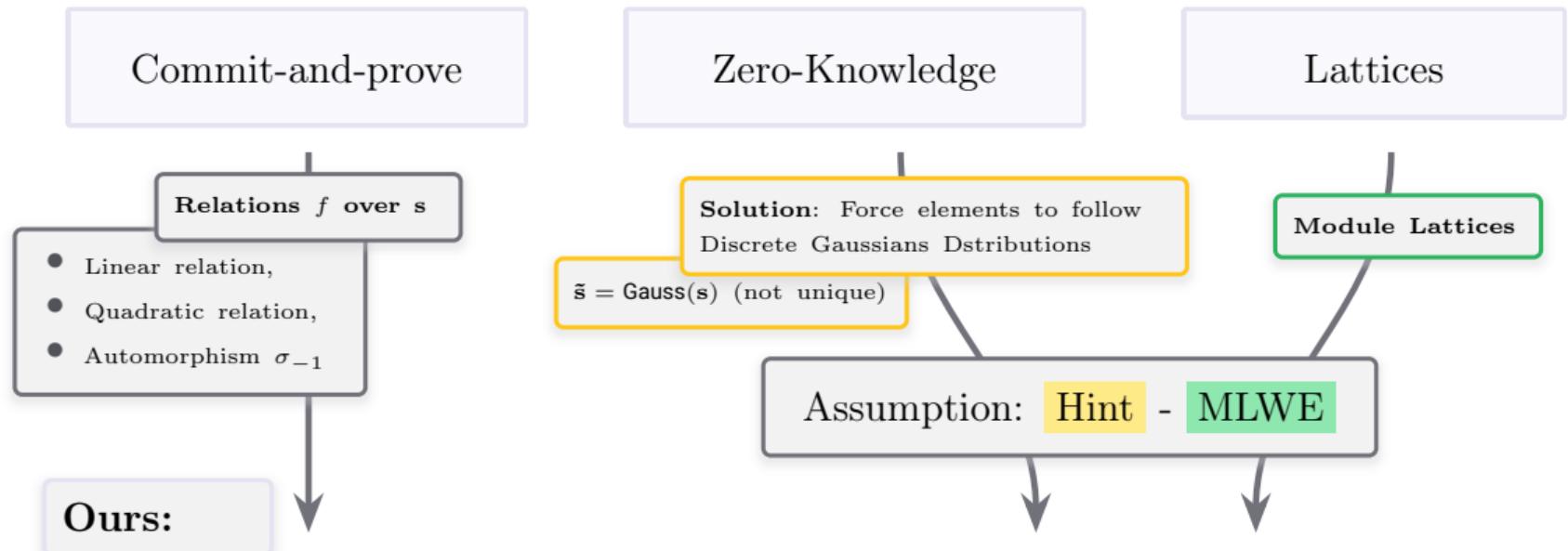
A Commit-and-prove framework of proof **secure based on rejection sampling**.

Contribution



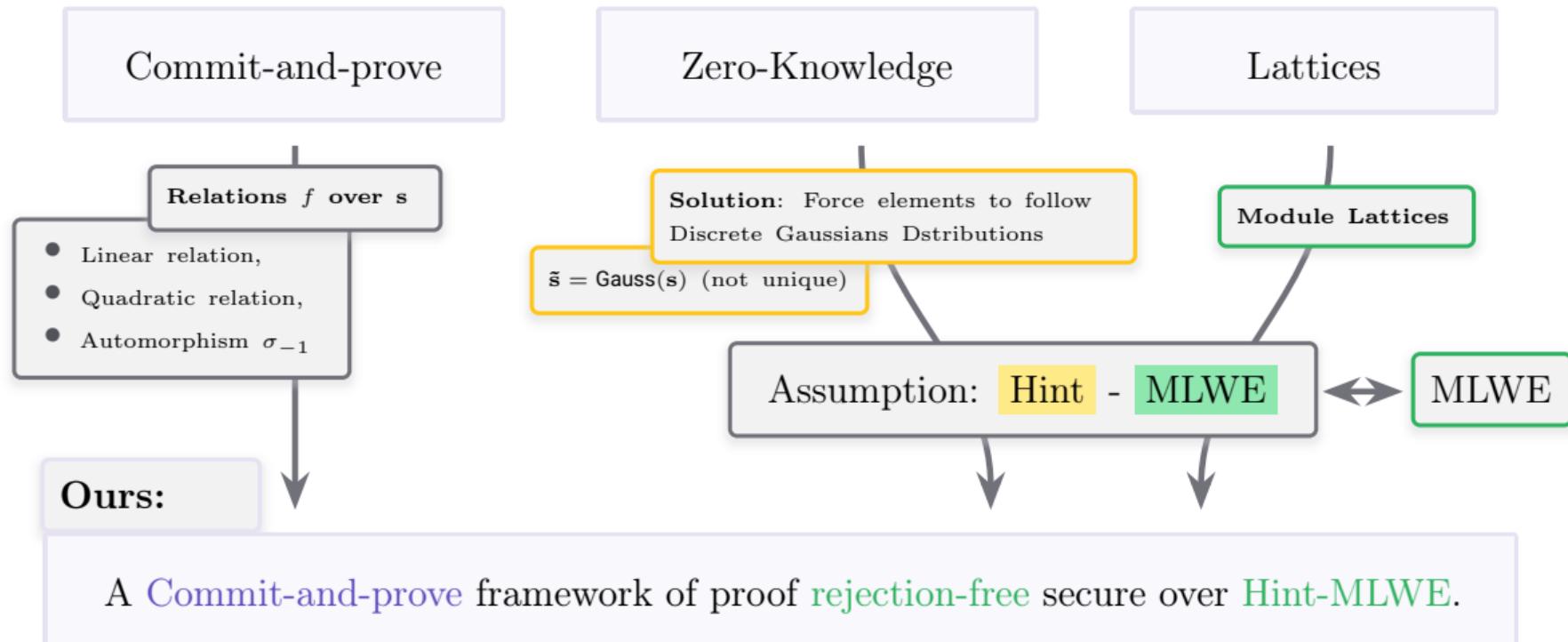
A Commit-and-prove framework of proof **rejection-free** secure over **Hint-MLWE**.

Contribution

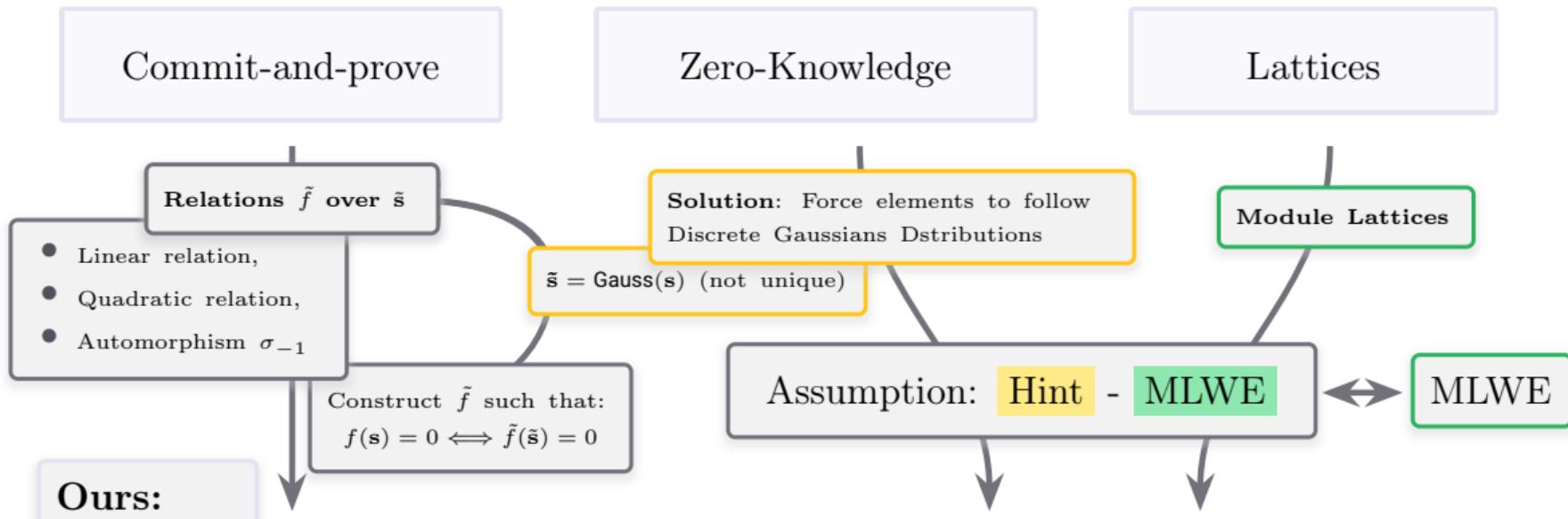


A Commit-and-prove framework of proof **rejection-free** secure over **Hint-MLWE**.

Contribution



Contribution



A Commit-and-prove framework of proof **rejection-free** secure over **Hint-MLWE**.

Lattice assumption

Module Learning With Errors (MLWE) [Reg05,LS15]:

Consider $\mathcal{R} = \mathbb{Z}[X]/\langle X^d + 1 \rangle$ for d a power of two, $\mathcal{R}_q = \mathcal{R}/q\mathcal{R}$ with q an integer.

$$\mathbf{A} \leftarrow \mathcal{U}(\mathcal{R}^{m \times n})$$

$$\mathbf{b} \in \mathcal{R}^m$$

Public matrices and vectors

$$\mathbf{s} \leftarrow \mathcal{D}_{\mathcal{R}^n, \sigma_s}, \mathbf{e} \leftarrow \mathcal{D}_{\mathcal{R}^m, \sigma_e}$$

Discrete Gaussians

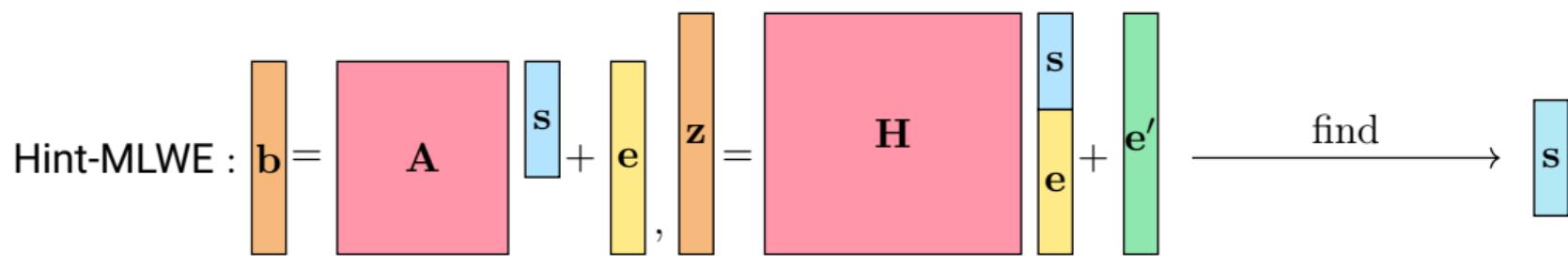
[Reg05] On lattices, Learning With Errors, random linear codes, and cryptography; Regev, 2005

[LS15] Worst-Case to Average-Case Reductions for Module Lattices; Langlois and Stehlé, 2015

Lattice assumption

Module Learning With Errors (MLWE) with hints about the secret/error: Hint-MLWE [KLSS23]

Consider $\mathcal{R} = \mathbb{Z}[X]/\langle X^d + 1 \rangle$ for d a power of two, $\mathcal{R}_q = \mathcal{R}/q\mathcal{R}$ with q an integer.



$$\mathbf{A} \leftarrow \mathcal{U}(\mathcal{R}^{m \times n}), \mathbf{H} \in \mathcal{R}^{(n+m) \times (n+m)}, \mathbf{s} \leftarrow \mathcal{D}_{\mathcal{R}^n, \sigma_s}, \mathbf{e} \leftarrow \mathcal{D}_{\mathcal{R}^m, \sigma_e}, \mathbf{e}' \leftarrow \mathcal{D}_{\mathcal{R}^{(n+m)}, \sigma_{e'}}$$

$$\mathbf{b} \in \mathcal{R}^m, \mathbf{z} \in \mathcal{R}^{n+m}$$

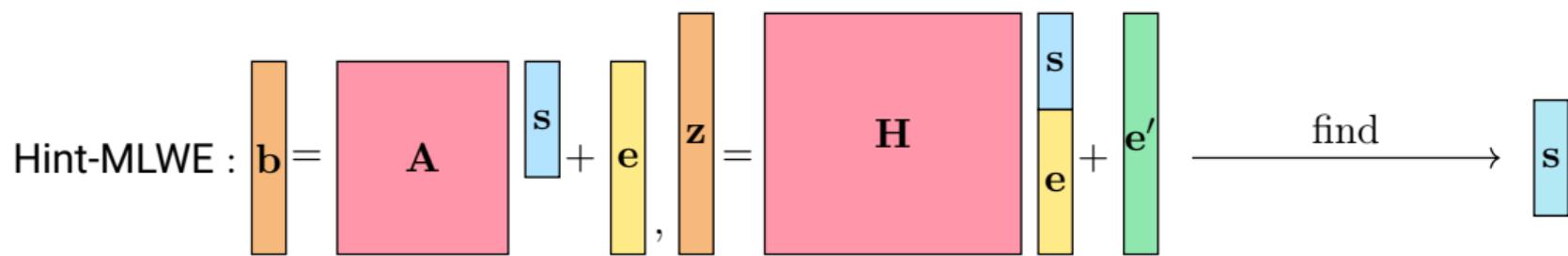
Discrete Gaussians

Public matrices and vectors

Lattice assumption

Module Learning With Errors (MLWE) with hints about the secret/error: Hint-MLWE [KLSS23]

Consider $\mathcal{R} = \mathbb{Z}[X]/\langle X^d + 1 \rangle$ for d a power of two, $\mathcal{R}_q = \mathcal{R}/q\mathcal{R}$ with q an integer.



$$\mathbf{A} \leftarrow \mathcal{U}(\mathcal{R}^{m \times n}), \mathbf{H} \in \mathcal{R}^{(n+m) \times (n+m)}, \mathbf{s} \leftarrow \mathcal{D}_{\mathcal{R}^n, \sigma_s}, \mathbf{e} \leftarrow \mathcal{D}_{\mathcal{R}^m, \sigma_e}, \mathbf{e}' \leftarrow \mathcal{D}_{\mathcal{R}^{(n+m)}, \sigma_{e'}}$$

$$\mathbf{b} \in \mathcal{R}^m, \mathbf{z} \in \mathcal{R}^{n+m}$$

Discrete Gaussians

Public matrices and vectors

MLWE \implies Hint-MLWE [KLSS23], when secrets and errors follow Discrete Gaussians.

Our modification of the framework

In ours:

$$\tilde{\mathbf{z}} := c \tilde{\mathbf{s}} + \tilde{\mathbf{y}}$$

- Use $\tilde{\mathbf{z}}$ as hint in Hint-MLWE ensuring that it is built on a Gaussian element.

In [LNP22]:

$$\mathbf{z} := c \mathbf{s} + \mathbf{y}$$

- Use **rejection sampling** to ensure **zero-knowledge**.

Our modification of the framework

In ours:

$$\tilde{\mathbf{z}} := c \tilde{\mathbf{s}} + \tilde{\mathbf{y}}$$

- Use $\tilde{\mathbf{z}}$ as hint in Hint-MLWE ensuring that it is built on a Gaussian element.
- Use the Gaussianised $\tilde{\mathbf{s}} = \text{Gauss}(\mathbf{s})$ (such that $\mathbf{G}_b \tilde{\mathbf{s}} = \mathbf{s}$) using [HSS24].

In [LNP22]:

$$\mathbf{z} := c \mathbf{s} + \mathbf{y}$$

- Use **rejection sampling** to ensure **zero-knowledge**.

[LNP22] Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General; Lyubashevsky, Nguyen, and Plançon, 2022

[HSS24] Concretely Efficient Lattice-based Polynomial Commitment from Standard Assumptions; Hwang, Seo, and Song, 2024

Our modification of the framework

In ours:

$$\tilde{\mathbf{z}} := c \tilde{\mathbf{s}} + \tilde{\mathbf{y}}$$

- Use $\tilde{\mathbf{z}}$ as hint in **Hint-MLWE** ensuring that it is built on a Gaussian element.
- Use the Gaussianised $\tilde{\mathbf{s}} = \text{Gauss}(\mathbf{s})$ (such that $\mathbf{G}_b \tilde{\mathbf{s}} = \mathbf{s}$) using [HSS24].

$$\begin{aligned} \mathbf{s} &:= \begin{bmatrix} 1 & b & \cdots & b^k & & \mathbf{0} \\ & & & & \ddots & \\ & & & & & 1 & b & \cdots & b^k \end{bmatrix} \tilde{\mathbf{s}} \text{ with } \tilde{\mathbf{s}} = \begin{bmatrix} \tilde{s}_0 \\ \vdots \\ \tilde{s}_k \end{bmatrix} \\ &=: \mathbf{G}_b \text{ with } k = \lfloor \log_b q \rfloor - 1 \end{aligned}$$

Our modification of the framework

In ours:

$$\tilde{\mathbf{z}} := c \tilde{\mathbf{s}} + \tilde{\mathbf{y}}$$

- Use $\tilde{\mathbf{z}}$ as hint in **Hint-MLWE** ensuring that it is built on a Gaussian element.
- Use the Gaussianised $\tilde{\mathbf{s}} = \text{Gauss}(\mathbf{s})$ (such that $\mathbf{G}_b \tilde{\mathbf{s}} = \mathbf{s}$) using **[HSS24]**.

Take a prime integer $q = b^2 + 1$, e.g. we take $17 = 4^2 + 1$.

Let $\mathbf{s} = \begin{bmatrix} 1 & 7 & -1 \end{bmatrix}$ decomposed in base 4 as $\hat{\mathbf{s}} = \begin{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} & \begin{bmatrix} 3 & 1 \end{bmatrix} & \begin{bmatrix} 0 & 4 \end{bmatrix} \end{bmatrix}$ (L to R).

Our modification of the framework

In ours:

$$\tilde{\mathbf{z}} := c \tilde{\mathbf{s}} + \tilde{\mathbf{y}}$$

- Use $\tilde{\mathbf{z}}$ as hint in **Hint-MLWE** ensuring that it is built on a Gaussian element.
- Use the Gaussianised $\tilde{\mathbf{s}} = \text{Gauss}(\mathbf{s})$ (such that $\mathbf{G}_b \tilde{\mathbf{s}} = \mathbf{s}$) using **[HSS24]**.

Take a prime integer $q = b^2 + 1$, e.g. we take $17 = 4^2 + 1$.

Let $\mathbf{s} = \begin{bmatrix} 1 & 7 & -1 \end{bmatrix}$ decomposed in base 4 as $\hat{\mathbf{s}} = \begin{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} & \begin{bmatrix} 3 & 1 \end{bmatrix} & \begin{bmatrix} 0 & 4 \end{bmatrix} \end{bmatrix}$ (L to R).

We add a Gaussian error sampled from $\{\mathbf{x} \mid \mathbf{G}_b \mathbf{x} = \mathbf{0}\}$ centred in $\mathbf{0}$.

- Here, consider the Gaussian sampled element $\hat{\mathbf{e}} = \begin{bmatrix} \begin{bmatrix} 5 & 3 \end{bmatrix} & \begin{bmatrix} 1 & 4 \end{bmatrix} & \begin{bmatrix} -4 & 7 \end{bmatrix} \end{bmatrix}$.

Our modification of the framework

In ours:

$$\tilde{\mathbf{z}} := c \tilde{\mathbf{s}} + \tilde{\mathbf{y}}$$

- Use $\tilde{\mathbf{z}}$ as hint in **Hint-MLWE** ensuring that it is built on a Gaussian element.
- Use the Gaussianised $\tilde{\mathbf{s}} = \text{Gauss}(\mathbf{s})$ (such that $\mathbf{G}_b \tilde{\mathbf{s}} = \mathbf{s}$) using **[HSS24]**.

Take a prime integer $q = b^2 + 1$, e.g. we take $17 = 4^2 + 1$.

Let $\mathbf{s} = \begin{bmatrix} 1 & 7 & -1 \end{bmatrix}$ decomposed in base 4 as $\hat{\mathbf{s}} = \begin{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} & \begin{bmatrix} 3 & 1 \end{bmatrix} & \begin{bmatrix} 0 & 4 \end{bmatrix} \end{bmatrix}$ (L to R).

We add a Gaussian error sampled from $\{\mathbf{x} \mid \mathbf{G}_b \mathbf{x} = \mathbf{0}\}$ centred in $\mathbf{0}$.

- Here, consider the Gaussian sampled element $\hat{\mathbf{e}} = \begin{bmatrix} \begin{bmatrix} 5 & 3 \end{bmatrix} & \begin{bmatrix} 1 & 4 \end{bmatrix} & \begin{bmatrix} -4 & 7 \end{bmatrix} \end{bmatrix}$.

We finally compute: $\tilde{\mathbf{s}} = \hat{\mathbf{s}} + \hat{\mathbf{e}} = \begin{bmatrix} \begin{bmatrix} 6 & 3 \end{bmatrix} & \begin{bmatrix} 4 & 5 \end{bmatrix} & \begin{bmatrix} -4 & 11 \end{bmatrix} \end{bmatrix}$, Gaussian centred in $\hat{\mathbf{s}}$.

Our modification of the framework

In ours:

$$\tilde{\mathbf{z}} := c \tilde{\mathbf{s}} + \tilde{\mathbf{y}}$$

- Use $\tilde{\mathbf{z}}$ as hint in **Hint-MLWE** ensuring that it is built on a Gaussian element.
- Use the Gaussianised $\tilde{\mathbf{s}} = \text{Gauss}(\mathbf{s})$ (such that $\mathbf{G}_b \tilde{\mathbf{s}} = \mathbf{s}$) using [HSS24].

Let $q = 17$ and $b = 4$.

$$\begin{bmatrix} 1 \\ 7 \\ -1 \end{bmatrix} := \begin{bmatrix} 1 & 4 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix} \begin{bmatrix} 6 \\ 3 \\ 4 \\ 5 \\ -4 \\ 11 \end{bmatrix} \pmod{17}$$

Our modification of the framework

In ours:

$$\tilde{\mathbf{z}} := c \tilde{\mathbf{s}} + \tilde{\mathbf{y}}$$

- Use $\tilde{\mathbf{z}}$ as hint in **Hint-MLWE** ensuring that it is built on a Gaussian element.
- Use the Gaussianised $\tilde{\mathbf{s}} = \text{Gauss}(\mathbf{s})$ (such that $\mathbf{G}_b \tilde{\mathbf{s}} = \mathbf{s}$) using [HSS24].

$$\mathbf{s} := \sum_{0 \leq i < \lfloor \log_b q \rfloor} b^i \tilde{\mathbf{s}}_i + \sum_{0 \leq i < \lfloor \log_b q \rfloor} b^i \hat{\mathbf{e}}_i = \sum_{0 \leq i < \lfloor \log_b q \rfloor} b^i \tilde{\mathbf{s}}_i$$

Base- b decomposition Gaussian error over $\Lambda_q^\perp(\mathbf{G}_b)$

Our modification of the framework

In ours:

$$\tilde{\mathbf{z}} := \mathbf{c} \tilde{\mathbf{s}} + \tilde{\mathbf{y}}$$

- Use $\tilde{\mathbf{z}}$ as hint in **Hint-MLWE** ensuring that it is built on a Gaussian element.
- Use the Gaussianised $\tilde{\mathbf{s}} = \mathbf{Gauss}(\mathbf{s})$ (such that $\mathbf{G}_b \tilde{\mathbf{s}} = \mathbf{s}$) using **[HSS24]**.
- With the naive construction: Use $\tilde{\mathbf{z}}$ to prove relations over $\tilde{\mathbf{s}}$.

In **[LNP22]**:

$$\mathbf{z} := \mathbf{c} \mathbf{s} + \mathbf{y}$$

- Use **rejection sampling** to ensure **zero-knowledge**.
- Use \mathbf{z} to prove relations over \mathbf{s} .

Our modification of the framework

In ours:

$$\tilde{\mathbf{z}} := \mathbf{c} \tilde{\mathbf{s}} + \tilde{\mathbf{y}}$$

- Use $\tilde{\mathbf{z}}$ as hint in **Hint-MLWE** ensuring that it is built on a Gaussian element.
- Use the Gaussianised $\tilde{\mathbf{s}} = \text{Gauss}(\mathbf{s})$ (such that $\mathbf{G}_b \tilde{\mathbf{s}} = \mathbf{s}$) using **[HSS24]**.
- What we did: Use $\tilde{\mathbf{z}}$ to prove relations over \mathbf{s} .

In **[LNP22]**:

$$\mathbf{z} := \mathbf{c} \mathbf{s} + \mathbf{y}$$

- Use **rejection sampling** to ensure **zero-knowledge**.
- Use \mathbf{z} to prove relations over \mathbf{s} .

Extension to a commit-and-prove protocol

Black-box use to prove different relations

By just committing \mathbf{s} , we consider public relations over $\mathbf{x} := [\mathbf{s}, \sigma_{-1}(\mathbf{s})]$.

$$\mathbf{x}^\top \mathbf{R}_2 \mathbf{x} + \mathbf{r}_1^\top \mathbf{x} + r = t$$

$$\mathbf{R}\mathbf{x} = \mathbf{t}$$

Extension to a commit-and-prove protocol

Black-box use to prove different relations

By just committing \mathbf{s} , we consider public relations over $\mathbf{x} := [\mathbf{s}, \sigma_{-1}(\mathbf{s})]$.

$$\mathbf{x}^\top \mathbf{R}_2 \mathbf{x} + \mathbf{r}_1^\top \mathbf{x} + r = t$$

$$\mathbf{R}\mathbf{x} = \mathbf{t}$$

Some usecases and examples:

- Constant coeff of $(\mathbf{s}^\top \sigma_{-1}(\mathbf{s}))[0]$ is equal to $\langle \vec{s}, \vec{s} \rangle$ i.e. the constant coefficient of the quadratic relation for $\mathbf{R}_2 = \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{I} & \mathbf{0} \end{bmatrix}$, $\mathbf{r}_1 = \mathbf{0}$ and $r = 0$.
- Knowledge of $\mathbf{A}\mathbf{s} = \mathbf{0}$ such that $0 < \|\mathbf{s}\| < \beta$ (\mathbf{s} is a SIS solution),
- For the norm $\|\mathbf{s}\| < \beta \iff \beta^2 - (\mathbf{s}^\top \sigma(\mathbf{s}))[0] > 0$ + proof of no-wraparound.

Extension to a commit-and-prove protocol

Black-box use to prove different relations

By just committing \mathbf{s} , we consider public relations over $\mathbf{x} := [\mathbf{s}, \sigma_{-1}(\mathbf{s})]$.

$$\mathbf{x}^\top \mathbf{R}_2 \mathbf{x} + \mathbf{r}_1^\top \mathbf{x} + r = t$$

$$\mathbf{R}\mathbf{x} = \mathbf{t}$$

$$\text{As } \sigma(\tilde{\mathbf{s}}) = \widetilde{\sigma_{-1}(\mathbf{s})} \text{ then } \tilde{\mathbf{x}} := [\tilde{\mathbf{s}}, \sigma_{-1}(\tilde{\mathbf{s}})]$$

Modifying relations over \mathbf{s} to relation over $\tilde{\mathbf{s}}$: remind that $\mathbf{x} = \mathbf{G}_b \tilde{\mathbf{x}}$.

- In [LNP22]: use $\mathbf{z} = c\mathbf{s} + \mathbf{y}$ to prove $\mathbf{x}^\top \mathbf{R}_2 \mathbf{x} + \mathbf{r}_1^\top \mathbf{x} + r_0 = 0$.
- Exploit the same strategy $\tilde{\mathbf{z}} = c\tilde{\mathbf{s}} + \tilde{\mathbf{y}}$ to prove $\tilde{\mathbf{x}}^\top \mathbf{R}_2 \tilde{\mathbf{x}} + \mathbf{r}_1^\top \tilde{\mathbf{x}} + r_0 = 0$.

Extension to a commit-and-prove protocol

Black-box use to prove different relations

By just committing \mathbf{s} , we consider public relations over $\mathbf{x} := [\mathbf{s}, \sigma_{-1}(\mathbf{s})]$.

$$\mathbf{x}^\top \mathbf{R}_2 \mathbf{x} + \mathbf{r}_1^\top \mathbf{x} + r = t$$

$$\mathbf{R}\mathbf{x} = \mathbf{t}$$

$$\text{As } \sigma(\tilde{\mathbf{s}}) = \widetilde{\sigma_{-1}(\mathbf{s})} \text{ then } \tilde{\mathbf{x}} := [\tilde{\mathbf{s}}, \sigma_{-1}(\tilde{\mathbf{s}})]$$

Modifying relations over \mathbf{s} to relation over $\tilde{\mathbf{s}}$: remind that $\mathbf{x} = \mathbf{G}_b \tilde{\mathbf{x}}$.

- In [LNP22]: use $\mathbf{z} = c\mathbf{s} + \mathbf{y}$ to prove $\mathbf{x}^\top \mathbf{R}_2 \mathbf{x} + \mathbf{r}_1^\top \mathbf{x} + r_0 = 0$.
- Exploit the same strategy $\tilde{\mathbf{z}} = c\tilde{\mathbf{s}} + \tilde{\mathbf{y}}$ to prove $\tilde{\mathbf{x}}^\top \mathbf{R}_2 \tilde{\mathbf{x}} + \mathbf{r}_1^\top \tilde{\mathbf{x}} + r_0 = 0$.
- Both the relation and \mathbf{G}_b are public, we use $\tilde{\mathbf{z}}$ to prove $\mathbf{x}^\top \mathbf{R}_2 \mathbf{x} + \mathbf{r}_1^\top \mathbf{x} + r_0 = 0$ by proving the equivalent relation $\tilde{\mathbf{x}}^\top (\mathbf{G}_b^\top \mathbf{R}_2 \mathbf{G}_b) \tilde{\mathbf{x}} + (\mathbf{r}_1^\top \mathbf{G}_b) \tilde{\mathbf{x}} + r = 0$.

Conclusion

- A rejection-free alternative to prove computable relations,
- Without restriction to norm-bounded secret **but** not extendable to norm relations,
- Implementation usable (as an addon) of the LaZer library from [LSS24]:

Protocol	Phase	$(p \approx 2^{60}, m = 12)$	$(p \approx 2^{80}, m = 120)$
[LNP22]	Prove	324.22	4462.29
		59.45	3961.24
[LNP22]	Verify	18.54	1629.12
		41.74	3624.34

Mean times (in million cycles), with p the moduli and m the size of the secret.

[LNP22] Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General; Lyubashevsky, Nguyen, and Plançon, 2022

[LSS24] The LaZer Library: Lattice-Based Zero Knowledge and Succinct Proofs for Quantum-Safe Privacy; Lyubashevsky, Seiler, and Steuer, 2024

Conclusion

- A rejection-free alternative to prove computable relations,
- Without restriction to norm-bounded secret **but** not extendable to norm relations,
- Implementation usable (as an addon) of the LaZer library from [LSS24]:

Protocol	Phase	$(p \approx 2^{60}, m = 12)$	$(p \approx 2^{80}, m = 120)$
[LNP22]	Prove	324.22	4462.29
		59.45	3961.24
[LNP22]	Verify	18.54	1629.12
		41.74	3624.34

Verifying phase
at most $\times 3$

Mean times (in million cycles), with p the moduli and m the size of the secret.

[LNP22] Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General; Lyubashevsky, Nguyen, and Plançon, 2022

[LSS24] The LaZer Library: Lattice-Based Zero Knowledge and Succinct Proofs for Quantum-Safe Privacy; Lyubashevsky, Seiler, and Steuer, 2024

Conclusion

- A rejection-free alternative to prove computable relations,
- Without restriction to norm-bounded secret **but** not extendable to norm relations,
- Implementation usable (as an addon) of the LaZer library from [LSS24]:

Protocol	Phase	$(p \approx 2^{60}, m = 12)$	$(p \approx 2^{80}, m = 120)$	
[LNP22]	Prove	324.22	4462.29	Proving phase at most $\times \frac{3}{\text{rej. rate}}$
		59.45	3961.24	
Ours	Verify	18.54	1629.12	
		41.74	3624.34	

Mean times (in million cycles), with p the moduli and m the size of the secret.

[LNP22] Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General; Lyubashevsky, Nguyen, and Plançon, 2022

[LSS24] The LaZer Library: Lattice-Based Zero Knowledge and Succinct Proofs for Quantum-Safe Privacy; Lyubashevsky, Seiler, and Steuer, 2024