M2 Cybersécurité — MCYBFI3D (2025-2026) Adeline Roux-Langlois & Antoine Douteau

Cryptographie post quantique : TPz - Signature basé sur les réseaux euclidiens

0.1 Paquetages nécessaires

On vous joint ici un ensemble de paquetages sage pouvant vous étre utile lors de vos implémentations.
¢ Distributions Gaussiennes Discretes sur les réseaux
* Générateur de mauvaises bases
¢ Hashlib: librairie python non spécifique a sage.

On rappelle également les différentes notations décrites dans ce TP:

* On dénote par Z; := Z/qZ I'ensemble des entiers modulo g,

o x & S décrit un tirage uniforme dans I'ensemble fini S.

® x < Dg,, décrit une distribution gaussienne dans 1'ensemble S d’écart-type o, centrée en c. Par
défaut la distribution est centrée en 0.

1 Définitions

(DefSignatureFR) Exercice 1. Définitions de schémas de signature

1. Donner la définition de schéma de signature.

2. Quels sont les différents types de sécurité d’un schéma de signature ?

2 Génération de trappes pour les réseaux

Avant de passer a I'implémentation d'un schéma de signature, il est important d’implémenter toutes les
briques nécessaires, notamment la conception des réseaux avec trappes. L’idée est d’avoir un unique
réseau choisi de tel sorte a ce qu’'on possede deux bases distinctes: une "bonne" base (que I'on considerera
comme une clé privée) et une "mauvaise" base (que I'on dévoilera en tant que clé publique).
Contrairement au schéma de chiffrement du TP précédent, on ne peut pas utiliser le générateur de réseau
difficile fourni par Sage, car celui-ci nous transmet un réseau uniquement avec une mauvaise base, retrou-
ver une bonne base est un probleme difficile. (*Il y a d’accord une "compétition" permettant de stess-tester
la difficulté de ces problémes de réseaux: *). L'idée est d’échantillonner parallélement la mauvaise ET la
bonne base. En appliquant un Leftover Hash Lemma, la mauvaise matrice générée paraitra alors com-
pletement aléatoire.

(GadgetMatrixFR) Exercice 2. Matrice Gadget
Un vecteur gadget G est un vecteur construitcomme g’ := [1 b ... b*1] (ott [logq] = k). Ce vecteur

est le vecteur permettant de reconstruire n’importe quel nombre ndécomposé en base b, tel que n < b*.

https://doc.sagemath.org/html/en/reference/stats/sage/stats/distributions/discrete_gaussian_lattice.html
https://doc.sagemath.org/html/en/reference/cryptography/sage/crypto/lattice.html
https://docs.python.org/3/library/hashlib.html
https://www.latticechallenge.org/

On peut étendre la définition a une matrice gadget G. Si on a un vecteur de m décompositions en base
b, on étend la définition: G :=1,, ® gT, oll 'opérateur ® est le produit de Kronecker (également produit
tensoriel sur les).

® A= (aij)icin) jeim) € Mnm X B(€ My) — (a;jB)ij € Myt

(Tout entier x se décompose en base binaire x € A(G): tous ces vecteurs x sont les plus petits éléments
avec une norme infinie égale a 1.) Ainsi il est facile d’avoir des solutions de relation G X x = y on prend
simplement la décomposition en base 2 de y qu’on concatene: cela forme x (cette décomposition n’est pas
forcément unique).

1. Construire une fonction genGadgetMatrix retournant la matrice G pour g = 2%, et pour m vecteurs.

Pourquoi passer par A(G) ? car on sait construire une trappe qui est la base Tg de son réseau dual:

Tg=1y® . (siq:2k>.

La matrice a droite du produit est de taille k x k.

2. Etender la fonction précédente afin qu’elle retourne également la trappe-base T associée. Quelle
relation a-t’on entre G et Tg ?

3. Construire la fonction de décomposition binaire decomp prenant en entrée un entier g et ressortant
sa décomposition binaire en base 2.

En réalité, la connaissance de la trappe (ici la base) de G n’est pas limitée a 4 = 2, dans le cas ot1 4 est un
entier naturel quelconque, on définit la base par:

Tg=1y® -1 . deCOmP(’?)T

ol la derniere colonne étant la décomposition binaire de g (bits de poids faible en haut).

4. Généraliser la fonction précédente en genGadgetTrapdoor prenant en entrée un entier naturel quel-
conque g > 0, une taille m > 0 et ressortant les matrices G et Tg.

(TrapdoorFR) Exercice 3. Génération de trappes pour les réseaux
Nous rappelons les différentes étapes a prendre en compte lors de la génération d'une trappe associés a
une matrice. L'idée est d’en partant d’une base d'un réseau quelconque, de se ramener au réseau engendré
par une matrice gadget G (avec des coordonnées étant des puissances de 2 i.e. b = 2), 'avantage de ce
réseau est que les petits élements sont les décompositions naturelles et déterministes des nombres entiers.

https://en.wikipedia.org/wiki/Kronecker_product

1. Construire une fonction params permettant d’avoir de maniére globale les parametres, variables et
objets qui seront utilisées tout au long de l'exercice (le but est d’avoir une fonction possédant en
entrée un modulo g et une taille m, et de mettre a jour toutes les variables liées utilisées).

Nous allons maintenant implémenter 1’échantillonage de la trapdoor présentée en [section 5.2].

2. Implémenter une fonction genLatticeTrapdoor permettant de construire une matrice cible A en suiv-
ant [Algorithme 1], pour H = I, et en prenant comme distribution D de R:

1 1
D:{-1,0,1} —[0,1]: p(0) = 5 et p(£1) = i
Quelle relation a-t'on entre A, la trappe R et G ?

3. (Facultative) La fonction précédente permet de générer, en méme temps, une matrice pseudo-aléatoire
A et une trappe associée qu’on denotera R. A la différence de I'exercice précédent, ici R est une
trappe mais n’est pas une base du réseau dual.

Quel lemme de ce méme papier permet de construire une base du réseau dual A (A) a partir de cette
trappe R? Rappeler la formule et construire la fonction genBasisDual d’entrée A et R et ressortant
la trappe-base Ta.

4. Dans les schémas cryptographiques efficaces, la clé privée est la trappe R et non T4, pourquoi ?

rapdoorSamplingFR) Exercice 4. Echantillonage avec trappe
Nous allons maintenant implémenter 1’échantillonage gaussien de la [Section 5.4].

1. En utilisant le paquetage de Distributions Gaussiennes Discrétes sur les réseaux, échantillonner un
élément x de A+(G) d’écart-type o = V5. (i.e Gx = 0). Vérifier la relation (Utiliser la méthode
transpose() sur une de vos matrices pour en sortir la transposée).

2. En utilisant x et u un vecteur cible, construisez un élément z de Ay (G) (c’est-a-dire que Gz = u)
suivant une loi gaussienne centrée en decomp(u). Vérifier la relation. Faites attention les décom-
positions binaires doivent toujours étre de méme taille [logg] (il faut remplir avec des 0 les espaces
manquants).

3. Généraliser en construisant une fonction samplePreimageGadget prenant en entrée un vecteur u et
un écart-type 0.

4. Grace a la relation entre A, R et G, et en utilisant samplePreimageGadget, construire une préimage
y de u dans le réseau de A, c’est-a-dire tel que Ay = u. Vérifiez que la norme de y est petite.

Comme vu en cours, la difficulté du probléme SIS ne réside pas en le fait de trouver une solution quel-
conque, mais bien de trouver une solution "petite”. Trouver une solution quelconque est en effet facile, il
faut simplement réaliser un pivot de Gauss et c’est gagner. C’est ce que fait la méthode .solve_right().

5. Généraliser les 3 dernieres questions en une unique fonction samplePreimage prenant en entrée
A, R, 0 et une cible u ainsi que les différents parametres globaux.

6. Tester vos implémentations pour des parametres m = 32,48,64 (la dimension est le parametre de
sécurité).

https://eprint.iacr.org/2011/501.pdf#subsection.5.2
https://eprint.iacr.org/2011/501.pdf#algorithm.1
https://eprint.iacr.org/2011/501.pdf
https://eprint.iacr.org/2011/501.pdf
https://doc.sagemath.org/html/en/reference/stats/sage/stats/distributions/discrete_gaussian_lattice.html

(SecureSamplingFR) (Facultatif) Exercice 5. Echantillonage sécurisé

Si votre construction précédente est valide, alors vous avez généré un algorithme d’échantillonage sur un
réseau pseudo-aléatoire. Sans la trappe générée avec le réseau, il est supposé difficile de générer de petits
élements. Cependant, pour l'instant, il n’est pas possible de s’assurer de la sécurité de 1’échantillonneur
et méme plus, on sait qu'il n’est pas sécurisé car il fait fuiter des informations sur la trappe R.

Pour cela, on modifie légérement 1'algorithme d’échantillonage comme dans [Algorithm 3], dans une
version simplifiée ci-dessous.

Algorithm 1: Echantillonage gaussien sécurisé dans un réseau

Input: une base A, une trappe R associée, une cible u € Z; et une matrice positive définie X.
Output: une préimage x telle que Ax = u ot x suit une loi statistiquement proche de D , L(A)rVE
T (A),

Phase offline:
S B m (2+3%) [RT 1);

assert ZP =2 Pﬂ [RT I]

Echantilloner une perturbation p <~ D, , 5—;
4 P

Phase online:

v+ u—Ap;

z < samplePreimageGadget(v,r\/Xg);

Return x <~ p + Pﬂ z

1. Générer une perturbation p et calculer w et W comme dans la phase offline.

La phase online integre la cible u auquel on souhaite la préimage. Cependant, on tiendra ici compte de la
perturbation précédente p, ainsi, au lieu de donner une préimage de u, on donnera une préimage perturbée
par p, assurant la sécurité, c’est-a-dire ne révélant pas d’information sur R.

2. Générer la nouvelle cible perturbée v.

3. Utiliser votre algorithme d’échantillonage précédent pour générer une préimage de v. Puis construire
la préimage finale x de u ne révélant pas d’informations sur R.

3 Signature GPV

(GPvsignFR) Exercice 6. Signature GPV
La signature que vous allez construire est issue de 1’article: Craig Gentry, Chris Peikert, and Vinod Vaikun-
tanathan. 2008. Trapdoors for hard lattices and new cryptographic constructions. In Proceedings of the
fortieth annual ACM symposium on Theory of computing (STOC ‘08). Association for Computing Ma-
chinery, New York, NY, USA, 197-206.

En utilisant les différentes fonctions implémentées précédemment, implémenter le schéma de signature
GPV présenté dans la [Section 6.2].

1. La construction basera sa sécurité sur le probleme SIS. Construire une fonction GPVparams perme-
ttant de générer de bons parametres globaux (tailles) afin d’assurer la sécurité de la construction.

https://eprint.iacr.org/2011/501.pdf#algorithm.3
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://eprint.iacr.org/2007/432.pdf#subsection.6.2

2. Implémenter la fonction GPVKeyGen prenant en entrée un parametre de sécurité A, et renvoyant
une (mauvaise) base A d'un réseau (définissant la clé de vérification vk) et sa trappe associée T, une
bonne base du réseau dual A+(A) (définissant la clé de signature sk). La fonction f4 est définie
comme fy @ Z)' — Z! : e — Ae. Vérifier les conditions & vérifier afin d’assurer la sécurité (elle
residera sur la difficulté d"un probléme SIS associé de mémes tailles).

3. La fonction de signature nécessite de signer un haché salé plutdt que le message clair. Pourquoi
signer un haché d’'un message-salé plutét que le message clair, plutdét qu'un haché du message ?
En utilisant une fonction de hachage, construire une fonction vectHash permettant de réécrire la
sortie afin qu’elle possede une structure vectorielle adaptée afin d’utiliser les différentes fonctions
précédentes.

4. Implémenter la fonction GPVSign prenant en entrée un message m et la clé sk, ressortant une signa-
ture ¢ ainsi qu'un sel r.

5. Implémenter la fonction GPV Verify prenant en entrée un message 1, un sel r, une signature associée
o et la clé vk et ressortant 1 si la signature est valide et o sinon. En plus de la bonne relation
fa(o) = H(m||r), la signature o doit valider une autre condition, laquelle ? (idée: il est facile de
trouver un x quelconque tel que Ax = 0).

6. Vérifier I'implémentation de vos fonctions pour A = 32,48, 64.

4 (Facultatif) Extension de la génération de trappe
J. Alwen and C. Peikert. Generating shorter bases for hard random lattices. In STACS, pages 75-86. 2009.

Cash, D., Hotheinz, D., Kiltz, E., Peikert, C. (2010). Bonsai Trees, or How to Delegate a Lattice Basis. In:
Gilbert, H. (eds) Advances in Cryptology — EUROCRYPT 2010.

(ExtendTrapdoorFR) Exercice 7. Extension de la génération de trappe
Nous allons voir différents moyens d’étendre 'utilisation des trappes. Précédemment nous avons vu qu’il
était possible de générer une base pseudo-aléatoire A et une trappe R en méme temps. Cependant, afin
de permettre des constructions plus pertinentes, il est possible d’étendre 1'utilisation d"une base pour des
réseaux différents, dépendant toujours de A.

1. Implémenter l'algorithme déterministe de la [Section 3.3]. Cette algorithme permet d’étendre I'action
de la "bonne base" T4 sur l'entiereté du nouveau réseau et non plus sur les prémieres coordonnées
sur laquelle elle était associée. L'avantage second en plus de I'extension est que cela peut se faire
sans entraver la taille de R et donc sa qualité. Ici, on utilisera bien T4 et non pas juste R.

2. Implémenter 'algorithme de la [Section 3.4] permettant de rendre aléatoire la mauvaise base et ne
plus la relier directement a la construction de la bonne base.

3. Définir un fonction gen_lattice_with_trapdoor ressortant une bonne base et une mauvaise base apres
avoir eu en entrée les différentes tailles et dimensions souhaitées. (Révérifier bien les conditions
nécessaires des différents algorithmes)

4. Construire une fonction d’échantillonage de préimage, comme 1’Algortihme 1.

https://eprint.iacr.org/2008/521.pdf
https://eprint.iacr.org/2010/591.pdf
https://eprint.iacr.org/2010/591.pdf
https://eprint.iacr.org/2010/591.pdf#subsection.3.3
https://eprint.iacr.org/2010/591.pdf#subsection.3.4

	0.1 Paquetages nécessaires
	1 Définitions
	1. Définitions de schémas de signature

	2 Génération de trappes pour les réseaux
	2. Matrice Gadget
	3. Génération de trappes pour les réseaux
	4. Echantillonage avec trappe
	5. Echantillonage sécurisé

	3 Signature GPV
	6. Signature GPV

	4 (Facultatif) Extension de la génération de trappe
	7. Extension de la génération de trappe

