Examen de fin de séance - Mathématiques R114

Exercice 1: (20min) On considère $Z_1 = -4 - 2i$ et $Z_2 = 2\sqrt{3} + 6i$.

1. Calculer la somme $Z_1 + Z_2$.

Solution: $-4 + 2\sqrt{3} + 4i$

2. Donner $\overline{Z_1}, \overline{Z_2}$.

Solution: $\overline{Z_1} = -4 + 2i$; and $\overline{Z_2} = 2\sqrt{3} - 6i$

3. Calculer le produit $\overline{Z_1} \times Z_2$.

Solution: $(-12 - 8\sqrt{3}) + (-24 + 4\sqrt{3})i$

4. Calculer les modules $|Z_1|, |Z_2|$.

Solution: $|Z_1| = \sqrt{20}$; and $|Z_2| = \sqrt{48}$

5. Donner la partie réelle et imaginaire de $\frac{1}{Z_1}$.

Solution: $\operatorname{Re}(\frac{1}{Z_1}) = -\frac{1}{5}$; $\operatorname{Im}(\frac{1}{Z_1}) = \frac{1}{10}$

6. Exprimer l'argument de $\overline{Z_1}Z_2$ à l'aide de la fonction arctan $\mod \pi.$

Solution: $\arctan(\frac{6-\sqrt{3}}{3+2\sqrt{3}}) - \pi$.

Exercice 2: (10min) On considère $Z_1 = \frac{\sqrt{2}}{2}e^{-\frac{5\pi}{6}}, Z_2 = 4.$

1. Donner le module et l'argument de Z_1 .

Solution: $|Z_1| = \frac{\sqrt{2}}{2}$; and $\theta_1 = -\frac{5\pi}{6} \mod 2\pi$

2. Déterminer le module et l'argument de Z_2 .

Solution: $|Z_2| = 4$; and $\theta_2 = 0 \mod 2\pi$

3. Déterminer les modules et argument de $\overline{Z_1}, Z_1^2, Z_1 \times Z_2$ et $\frac{1}{Z_1}$.

Solution:

$$|\overline{Z_1}| = |Z_1| = \frac{\sqrt{2}}{2}; \ \theta = -\theta_1 = -\frac{5\pi}{6} \mod 2\pi$$

$$|Z_1^2| = |Z_1|^2 = \frac{1}{2}; \ \theta = 2\theta_1 = \frac{\pi}{3} \mod 2\pi$$

$$\begin{split} |Z_1^2| &= |Z_1|^2 = \frac{1}{2}; \ \theta = 2\theta_1 = \frac{\pi}{3} \mod 2\pi \\ |Z_1 \times Z_2| &= \frac{\sqrt{2}}{2} \times 4 = 2\sqrt{2}; \ \theta = \theta_1 + \theta_2 = -\frac{5\pi}{6} \mod 2\pi \end{split}$$

$$\left|\frac{1}{Z_1}\right| = \frac{1}{|Z_1|} = \sqrt{2}; \ \theta = -\theta_1 = \frac{5\pi}{6}$$

Exercice 3: (10min)

Rappel: un nombre $z \in \mathbb{C} = a + bi$ peut se voir défini en coordonnées polaires où $z = |z|e^{i\theta}$ où |z| est son module et θ son argument dans $[-\pi, \pi]$.

1. Résoudre l'équation P(z) = 0 dans \mathbb{C} puis factoriser pour:

$$P(z) = z^2 + z - 1$$

BONUS: Factoriser en coordonnées polaires. Pour le calcul des coordonnées polaires, il vous sera utile de savoir que la fonction logarithme est une fonction strictement croissante.

Solution:
$$a = 1, b = 1, c = -1$$
: donc $\Delta = b^2 - 4ac = 5$
 $z_1 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-1 + \sqrt{5}}{2} = \frac{-1 + \sqrt{5}}{2} e^{i0}$, $z_2 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-1 - \sqrt{5}}{2} = \frac{1 + \sqrt{5}}{2} e^{i\pi}$ donc $P(z) = (z + \frac{1 - \sqrt{5}}{2})(z + \frac{1 + \sqrt{5}}{2}) = (z - \frac{-1 + \sqrt{5}}{2} e^{i0})(z - \frac{1 + \sqrt{5}}{2} e^{i\pi})$.

2. Résoudre l'équation P(z)=0 dans $\mathbb C$ puis factoriser en coordonnées polaires pour:

$$P(z) = z^2 + z + 1$$

Solution:
$$a=1,b=1,c=1$$
: donc $\Delta=b^2-4ac=-3$ $z_1=\frac{-b+i\sqrt{-\Delta}}{2a}=\frac{-1+i\sqrt{3}}{2}=e^{\frac{2i\pi}{3}},\ z_2=\frac{-b-i\sqrt{-\Delta}}{2a}=\frac{-1-i\sqrt{3}}{2}=e^{-\frac{2i\pi}{3}}$ donc $P(z)=(z-e^{\frac{2i\pi}{3}})(z-e^{-\frac{2i\pi}{3}})$.

3. En vous aidant de (2), résoudre l'équation P(z) = 0 dans \mathbb{C} puis factoriser en coordonnées polaire pour:

$$P(z) = z^3 - 2z^2 - 2z - 3$$

Calculer P(3) vous sera utile.

Solution: P(3)=0 donc 3 est une racine évidente, on peut factoriser par (z-3). $P(z)=(z-3)(az^2+bz+c)$, on a donc :a=1,b=1,c=1 c'est le polynôme de la question (2). donc la factorisation est $P(z)=(z-3)(z-e^{-\frac{2i\pi}{3}})(z-e^{\frac{2i\pi}{3}})$ et les racines sont $\{3,e^{-\frac{2i\pi}{3}},e^{\frac{2i\pi}{3}}\}$